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Motivation

Lightweight and reliable hydrogen storage vessel
• Reliability-based design optimization (RBDO)

1 achieves the weight reduction for the tube trailer → builds cost-effective
transportation system

2 enables to satisfy the high safety requirements for a vessel under operating
condition uncertainty

Figure 1: Storage, transportation, and charging process of a vessel

Rapid yet accurate analysis for a vessel model
• Component-based reduced basis (RB) method

1 enables to devide a model into simpler components → allows parallel
computing

2 achieves a significant reduction in computational time by virtue of RB
method compared to conventional finite element (FE) method
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Problem statement

1 formulated the RBDO problem as Fig. 2

2 combined the structural simulation with the RBDO

3 used component-based RB method to evaluate the stress rapidly

Figure 2: Reliability-based design optimization using component-based reduced basis method
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Method
Component-based model

• applied RB approximation to each component → static condensation
reduced basis element (scRBE) method

• Connected Γp1
and Γp2

, Γp3
and Γp4

to create a full model

• Defined parametric map of each subdomain Ωj to parameterize the model
for design variables
Γpi

: i th port surface (i = 1, 2, ..., 4), Ωj : jth subdomain (j = 1, 2, ..., 4)

Figure 3: Component-based vessel model
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Method
Geometric parameterization

• Parametric map M(x;µ) : Ω → Ωo(µ)

M(x;µ) = xo(x;µ) = x +∆xr +∆xt (1)

Ω: parameter-independent reference domain
Ωo(µ): parameter-dependent original domain

• Geometric parametrization
• Geometric parameters: µ1: radius, µ2: thickness

Figure 4: Geometric parametrization of the
radius and the thickness

• Radius: mapping for the outer radius
rref, out

∆xr : ∆r = x : ∥x∥L2 (2)

where ∆r = µ1 − rref,out

• Thickness: mapping for the inner
radius rref, in with outer radius rref, out
fixed

∆xt : ∆t ∝ x : rref, in (3)

where ∆t = tref − µ2
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Method
Geometric parameterization

• Geometric parameterization for radius µ1

∆xr =
∆r

∥x∥L2

x =
µ1 − rref, out

∥x∥L2

x (4)

• Geometric parameterization for thickness µ2
• defined a linear interpolation function ϕ

ϕ(∥x∥L2) = A∥x∥L2 + B =

{
0, ∥x∥L2 = rref, out

1, ∥x∥L2 = rref, in
(5)

ϕ(∥x∥L2) =
rref, out − ∥x∥L2

tref
(6)

∆xt =
∆t

rref, in
ϕ(∥x∥L2)x =

(tref − µ2)(rref, out − ∥x∥L2)

rref, intref
x (7)

• Geometric parameterization for radius µ1 and thickness µ2

xo(x;µ) = x +
µ1 − rref, out

∥x∥L2

x +
(tref − µ2)(rref, out − ∥x∥L2)

rref, intref
x

= x
[

1 +
µ1 − rref, out

∥x∥L2

+
(tref − µ2)(rref, out − ∥x∥L2)

rref, intref

] (8)
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Method
Geometric parameterization

Table 1: Parametric maps of subdomains

Subdomain Parametric map M(x;µ)

Ω1

xo
1 (x;µ) = x1 + x1

[
µ1 − rref,out

∥x∥L2,Ω1

]
xo

2 (x;µ) = x2 + x2

[
µ1 − rref,out

∥x∥L2,Ω1

]
xo

3 (x;µ) = x3 + x3

[
µ1 − rref,out

∥x∥L2,Ω1

]

Ω2

xo
1 (x;µ) = x1 + x1

[
µ1 − rref,out

∥x∥L2,Ω2

+
(tref − µ2) (rref,out − ∥x∥L2,Ω2)

rref,in tref

]
xo

2 (x;µ) = x2 + x2

[
µ1 − rref,out

∥x∥L2,Ω2

+
(tref − µ2) (rref,out − ∥x∥L2,Ω2)

rref,in tref

]
xo

3 (x;µ) = x3 + x3

[
µ1 − rref,out

∥x∥L2,Ω2

+
(tref − µ2) (rref,out − ∥x∥L2,Ω2)

rref,in tref

]

Ω3

xo
1 (x;µ) = x1 + x1

[
µ1 − rref,out

∥x∥L2,Ω3

+
(tref − µ2) (rref,out − ∥x∥L2,Ω3)

rref,in tref

]
xo

2 (x;µ) = x2 + x2

[
µ1 − rref,out

∥x∥L2,Ω3

+
(tref − µ2) (rref,out − ∥x∥L2,Ω3)

rref,in tref

]
xo

3 (x;µ) = x3

Ω4

xo
1 (x;µ) = x1 + x1

[
µ1 − rref,out

∥x∥L2,Ω4

+
(tref − µ2) (rref,out − ∥x∥L2,Ω4)

rref,in tref

]
xo

2 (x;µ) = x2 + x2

[
µ1 − rref,out

∥x∥L2,Ω4

+
(tref − µ2) (rref,out − ∥x∥L2,Ω4)

rref,in tref

]
xo

3 (x;µ) = x3 + x3

[
µ1 − rref,out

∥x∥L2,Ω4

+
(tref − µ2) (rref,out − ∥x∥L2,Ω4)

rref,in tref

]
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Method
Linear elasticity problem

• Strong form
∂

∂xo
j

(
C o

ijkl
∂uo

k(µ)

∂xo
l

)
= 0, in Ωo(µ) (9)

• Boundary conditions
uo = 0 on Γo

1

uo
1 = 0 on Γo

2

uo
2 = 0 on Γo

3

qeo
i,n on Γo

4

(10)

Figure 5: Boundary conditions of the vessel model

• Weak form ∫
Ωo(µ)

∂vo
i

∂xo
j

C o
ijkl(µ)

∂uo
k(µ)

∂xo
l

dΩ =

∫
Γo

4(µ)

vo
i qeo

i,ndΓ (11)
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Method
Reduced basis (RB) method

• Mapping from Ωo(µ) to Ω
• requires inverse transformation of the geometric map M−1(x;µ).

• Domain transformation
• Define jacobian matrix JM of a M(x;µ).

(JM )pq =
∂xo

p

∂xq
(x) =

∂Mp(x;µ)

∂xq
(x) (12)

• Define inverse matrix of JM .

(JM−1 )pq =
∂xp

∂xo
q
(xo) =

∂M−1
p (xo;µ)

∂xo
q

(xo) (13)

• Weak form in bilinear and linear forms for a reference domain

a(u(µ), v;µ) = f (v;µ) (14)

where
a(u(µ), v;µ) =

∫
Ω

∂vi

∂xm
Cimkn(µ)

∂uk

∂xn
dΩ

f (v;µ) =
∫
Γ4

viqei,n |(JM )et|dΓ
(15)

• Effective constitutive tensor Cimkn

Cimkn = (JM−1)mjC
o
ijkl(µ)(JM−1)itnl |(JM )| (16)
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Method
Reduced basis (RB) method

• FE linear system
• FE solution

u(µ) =
N∑

i=1

ui
N (µ)ξi (17)

• Substituting eq. 17 to a(u(µ), v;µ) = f (v;µ),

AN uN = FN (18)

where (AN )ij = a(ξi , ξj ;µ), (FN )i = f (ξi ;µ), 1 ≤ i, j ≤ N

• Reduced basis (RB) method
• Dimension reduction modeling technique for parameterized PDE

AN uN = FN ⇒ AN uN = FN where N ≪ N (19)

Figure 6: Schematic illustration for the reduced basis method
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Method
Static condensation reduced basis element (scRBE) method

• scRBE method
• A component-based approach combined with RB method
• uses RB method to component interior to reduce the solution dimension

• Component-based FE system

Figure 7: Two components
system with an in-between

port


AΓp AT

Γp,Ωc,1
AT
Γp,Ωc,2

AΓp,Ωc,1 AΩc,1 0

AΓp,Ωc,2 0 AΩc, 2




uΓp

uΩc,1

uΩc,2

 =


fΓp

fΩc,1

fΩc,2


Represent uΩc,1 and uΩc,2 in terms of uΓp

(AΓp − AT
Γp,Ωc,1

A−1
Ωc,1

AΓp,Ωc,1
− AT

Γp,Ωc,2
A−1
Ωc,2

AΓp,Ωc,2
)︸ ︷︷ ︸

Asc

uΓp

= fΓp − AT
Γp,Ωc,1

A−1
Ωc,1

fΩc,1
− AT

Γp,Ωc,2
A−1
Ωc,2

fΩc,2︸ ︷︷ ︸
Fsc

(20)

AscuΓp = Fsc (21)
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Method
Static condensation reduced basis element (scRBE) method

• Component-based FE system Asc︸︷︷︸
Np×Np

uΓp︸︷︷︸
Np×1

= Fsc︸︷︷︸
Np×1

Asc = AΓp − AT
Γp,Ωc,1

A−1
Ωc,1

AΓp,Ωc,1︸ ︷︷ ︸
FE bubble b1

A,k

−AT
Γp,Ωc,2

A−1
Ωc,2

AΓp,Ωc,2︸ ︷︷ ︸
FE buble b2

A,k

Fsc = fΓp − AT
Γp,Ωc,1

A−1
Ωc,1

fΩc,1︸ ︷︷ ︸
FE bubble b1

F

−AT
Γp,Ωc,2

A−1
Ωc,2

fΩc,2︸ ︷︷ ︸
FE bubble b2

F

(22)

where

A−1
Ωc,i

AΓp,Ωc,i
= A−1

Ωc,1
[ai

1, · · · ai
Np

] = [bi
A,1, · · · bi

A,Np
]

A−1
Ωc,i

fΩc,i
= bi

F

(23)

• Component-based RB system (scRBE system) ÃscũΓp = F̃sc
• Apply RB method to FE bubbles

bi
A,k → Bi

A,k b̃i
A,k

bi
F → Bi

Fb̃i
F

(24)

⇒ Enable a tremendous speedup compared to component-based FE system
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Method
Reliability-based design optimization (RBDO)

Reliability-based design optimization (RBDO) formulation

find r, t ∈ R
minimize weight(r, t),

subject to volume(r, t)− V = 0,

P[G(r, t ,p) > 0] ≤ PTarget
F = 1%

rLB ≤ r ≤ rUB, tLB ≤ t ≤ tUB.
Figure 8: Design variables and

parameter

• Deterministic design variables r, t
• Probabilistic random variable p

• Random variable that follows normal distribution
• Mean: operating pressure 40 MPa
• Coefficient of variation: 5%

• Limit state function G

G(r, t ,p) = σmax(r, t ,p)− σa (25)
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Method
Reliability-based design optimization (RBDO)

• Probability of failure PF

PF =

∫
G(y)>0

fY (y)dy (26)

fY : probability density function of random variable Y

• Approximation to the probability of failure
• Used first-order reliability method to approximate PF
• Transform random variable and limit state function from non-normal

distribution space to normal distribution space using Rosenblatt
transformation

PF ≈ Φ(−β) (27)

where β = ∥u∗∥

Φ: cumulative distribution function of the standard normal distribution
β: reliability index
u∗: most probable point (MPP)

• Used performance measure approach (PMA) to search MPP
• Required to evaluate β = ∥u∗∥
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Method
Reliability-based design optimization (RBDO)

• Performance measure apporach (PMA)
• One of the methods to search MPP
• Fix β to target value βT

• Higher convergence rate than the conventional reliability index approach
(RIA)

for a given design r, t ∈ R,
find u∗,

minimize G(r, t ,pu),

subject to ∥u∥ = βT.

(28)

pu: random variable pd after Rosenblatt transformation
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Results
Reliability-based design optimization (RBDO)

• RBDO result

Figure 9: Optimization results and comparison of
design points

DDO: Deterministic design optimization
RBDO: Reliability-based design optimization
Ne: Number of function evaluations
PF: Probability of failure

Table 2: Optimization results summary

Baseline DDO RBDO

Cost
Weight (kg) 2300 1276 1479

Reduction (%) - 44.5 35.7

Design
variables

Radius (m) 0.272 0.250 0.255

Thickness (m) 0.053 0.031 0.036

Maximum stress (MPa) 197.702 298.667 267.544

Ne - 24 156

PF (%) 0.000 51.000 1.001
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Results
Model dimensions

• FE vs. scRBE dimensions
• Example: Ωc,1

Table 3: FE and scRBE dimensions for the component Ωc,1

FE
dimension

scRBE
dimension

Reduction
rate

Port Γp,1 1281 13 98.5

Port
dependent

bubble space

Γp,1

DOF 1 23550 15 1570

DOF 2 23550 15 1570

DOF 3 23550 15 1570

DOF 4 23550 14 1682.1

DOF 5 23550 14 1682.1

DOF 6 23550 14 1682.1

DOF 7 23550 15 1570

DOF 8 23550 18 1308.3

DOF 9 23550 14 1682.1

DOF 10 23550 14 1682.1

DOF 11 23550 18 1308.3

DOF 12 23550 19 1239.5

DOF 13 23550 14 1682.1

· · · · · ·
-

DOF 1281 23550

Port independent bubble space 70650 14 5046.4
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Results
Solutions

• FE vs. scRBE solutions

• Displacement magnitudes and absoulute errors

(a) Baseline design

(b) DDO design

(c) RBDO design

Figure 10: Displacement magnitudes of the
FE (top) and the scRBE models (bottom)

(a) Baseline design

(b) DDO design

(c) RBDO design

Figure 11: Displacement error norm between
the FE and the scRBE models
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Results
Computational times

• FE vs. scRBE solutions
• Single evaluation times of FE and scRBE models

Table 4: Computaitonal times of the FE and online scRBE models

Design FE anlysis time (s) scRBE analysis time (s) Reduction rate

DDO 76.8814 0.00716 10737.6

RBDO 76.5393 0.00722 10601.0

Baseline 76.2145 0.00727 10483.4

• Total evaluation times of FE and scRBE models

Table 5: Computational times of optimization with the FE and online scRBE models

Optimization type FE anlysis time (s) scRBE analysis time (s) Reduction rate

DDO 1837.0816 0.1732
10606.7

RBDO 11941.0304 1.1258
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Summary and conclusions

• Summary

• Conclusions
• Performed RBDO in an accurate and computationally efficient manner

with the aid of the scRBE method
• Contribute to cut down the time to reach an optimized design by realizing

the real-time simulations
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Future work

• Build digital twin model for fatigue diagnosis
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