
Model management 
strategy for

hierarchical Kriging



Motivation

Many-query analysis

• Requires repeated runs of simulations

• Becomes computationally intractable when using expensive

high fidelity simulations

Can we introduce cheaper low fidelity data into model training?

“How” should we allocate the samples across fidelities?
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Vision

Explore budget allocation strategy for hieararchical Kriging

Building blocks

1. Hierarchical Kriging

2. Multifidelity Monte Carlo (MFMC)

Goal

Apply MFMC budget allocation for hierarchical Kriging

Budget allocation strategy for 
multifidelity data 
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Lack of budget allocation strategy
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Gaussian process: Notation
• 𝑧𝑖 ∈ ℝ𝑑 : high fidelity input

• 𝑧∗ ∈ ℝ𝑑: test input

• 𝑓(1): ℝ𝑑 → ℝ: high fidelity model

• 𝑘: ℝ𝑑 × ℝ𝑑 → ℝ: kernel covariance function

5 / 26



Gaussian process: Assumptions
Models input-output relationship by assuming a Gaussian process prior

𝑓(1) ∼ 𝒢𝒫(0, 𝑘 ⋅,⋅ )

𝑦𝑖
1 ∈ ℝ: high fidelity observation

𝜖𝑖: noise

𝜎𝑒
2 ∈ ℝ: noise variance

𝑦𝑖
1

= 𝑓 1 𝑧𝑖 + 𝜖𝑖 , 𝜖𝑖 ∼ 𝒩(0, 𝜎𝑒
2𝐼)
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Gaussian process: Definition
Given training data 𝒟 = {𝒛, 𝒚(1)}, GP posterior distribution

𝑓 1 𝑧∗ 𝒟 ∼ 𝒩(𝔼 𝑓 1 𝑧∗ 𝒟 , 𝕍ar 𝑓 1 𝑧∗ 𝒟 )

𝔼 𝑓 1 𝑧∗ 𝒟 = 𝑘 𝒛, 𝑧∗; 𝜃 ⊤ 𝑘 𝒛, 𝒛; 𝜃 + 𝜎𝑒
2𝐼 −1𝒚(1) = መ𝑓 1 𝑧∗

Squared exponential kernel

𝑘 𝑧, 𝑧′; 𝜃 = 𝜃1exp −
𝑧 − 𝑧′

2
2

2𝜃2
2

𝜃1, 𝜃2: kernel hyperparameters
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How to find 𝜃, 𝜎𝑒
2?



Gaussian process: Training
Find 𝜃, 𝜎𝑒

2 that maximize log-likelihood by gradient-based optimization methods

max
𝜃,𝜎𝑒

2
log 𝑝(𝑦 1 |𝜃, 𝜎𝑒

2) 

= −
1

2
𝑦 1 ⊤

𝑘 𝑧, 𝑧; 𝜃 + 𝜎𝑒
2𝐼 −1𝑦 1 + log 𝑘 𝑧, 𝑧; 𝜃 + 𝜎𝑒

2𝐼 + 𝑛 log 2𝜋 

summary

𝔼 𝑓 1 𝑧∗ 𝒟 = 𝑘 𝒛, 𝑧∗; 𝜃 ⊤ 𝑘 𝒛, 𝒛; 𝜃 + 𝜎𝑒
2𝐼 −1𝒚(1) = መ𝑓 1 𝑧∗
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Hierarchical Kriging: Notation
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• 𝑧𝑖
(2)

∈ ℝ𝑑 : low fidelity input

• 𝑓(2): ℝ𝑑 → ℝ: low fidelity model

• 𝑦𝑖
(2)

∈  ℝ: low fidelity observation

𝒚(1) ∈ ℝ𝑛: high fidelity output vector

𝒚(𝟐) ∈ ℝ𝑚: low fidelity output vector

𝑛 < 𝑚



Hierarchical Kriging: Definition

• Predictor (posterior mean)

መ𝑓 1 𝑧∗ = 𝛼 መ𝑓 2 𝑧∗ + መ𝛿(𝑧∗)

• Based on Kennedy O’Hagan approach

𝑓 1 𝑧∗ = 𝛼𝑓 2 𝑧∗ + 𝛿 𝑧∗

𝛼 ∈ ℝ: scaling factor

• Assumes 𝑓 2 is a low fidelity GP model

• መ𝛿 is a discrepancy GP model
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Posterior mean of 𝑓 2  

Posterior mean of 𝛿 2  



Hierarchical Kriging: Definition
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• Predictor (posterior mean)

መ𝑓 1 𝑧∗ = 𝛼 መ𝑓 2 𝑧∗ + መ𝛿(𝑧∗)

𝛼 𝑘 𝒛, 𝑧∗ ⊤ 𝑘 𝒛, 𝒛; 𝜃 + 𝜎𝑒
2𝐼 −1𝒚 2 + 𝑘 𝒛, 𝑧∗; 𝜃 ⊤ 𝑘 𝒛, 𝒛; 𝜃 + 𝜎𝑒

2𝐼 −1𝒚𝑑

𝒚𝑑 = 𝒚(1) − 𝛼 መ𝑓(2)(𝒛), 

𝒚(1) ∈ ℝ𝑛, 𝒚𝑑 ∈ ℝ𝑛

Trained with low fidelity data 𝒚(2) ∈ ℝ𝑚

Trained with discrepancy data 

How to find 𝜃, 𝜎𝑒
2 for 𝛿?

summary



Gaussian process: Training
Find 𝜃, 𝜎𝑒

2 that maximize log-likelihood by gradient-based optimization methods

max
𝜃,𝜎𝑒

2
log 𝑝(𝑦𝑑|𝜃, 𝜎𝑒

2) 

= −
1

2
𝑦𝑑

⊤ 𝑘 𝑧, 𝑧; 𝜃 + 𝜎𝑒
2𝐼 −1𝑦𝑑 + log 𝑘 𝑧, 𝑧; 𝜃 + 𝜎𝑒

2𝐼 + 𝑛 log 2𝜋 

𝒚𝑑 = 𝒚(1) − 𝛼 መ𝑓(2)(𝒛)
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How to find 𝛼?



Hierarchical Kriging: Scaling factor
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• By solving generalized least squares

𝒚 𝟏 − 𝛼𝑓(2) 𝒛
𝑘 𝒛,𝒛 +𝜎𝑒

2𝐼

2

𝛼 = መ𝑓 2 𝑧 ⊤ 𝑘 𝑧, 𝑧 + 𝜎𝑒
2𝐼 −1 መ𝑓 2 𝒛

−1
( መ𝑓 2 𝑧 ⊤ 𝑘 𝑧, 𝑧 + 𝜎𝑒

2𝐼 −1𝑦(1))

Predictor

መ𝑓 1 𝑧∗ = 𝛼 𝑘 𝒛, 𝑧∗ ⊤ 𝑘 𝒛, 𝒛; 𝜃 + 𝜎𝑒
2𝐼 −1𝒚 2 + 𝑘 𝒛, 𝑧∗; 𝜃 ⊤ 𝑘 𝒛, 𝒛 + 𝜎𝑒

2𝐼 −1𝒚𝑑

𝒚(2) ∈ ℝ𝑚 , 𝒚𝑑 ∈ ℝ𝑛

How to allocate 𝑛, 𝑚?



MFMC budget allocation: MFMC estimator

More robust way to estimate mean

• Monte Carlo estimator

𝔼 𝑓 1 (𝑍) ≈ ത𝑦 1 =
1

𝑛
 σ𝑖=1

𝑛 𝑦𝑖
1

• MFMC estimator adds low fidelity data

Assumes nested samples 𝑧 ⊂ 𝑧(2)

𝔼 𝑓 1 (𝑍) ≈
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖
1 + 𝛼

1

𝑚
෍

𝑖=1

𝑚

𝑦𝑖
(2)

−
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖
(2)
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How to allocate 𝑛, 𝑚? 



MFMC budget allocation: Variance

Obtain optimal 𝑛 and 𝑚 that minimizes variance of the estimator

𝜎1
2

𝑛
+

1

𝑛
−

1

𝑚
(𝛼2𝜎2

2 − 2𝛼𝜌1,2𝜎1𝜎2)

• 𝜎1: standard deviation of high fidelity data

• 𝜎2: standard deviation of low fidelity data

• 𝜌1,2: correlation coefficient of high and low fidelity data
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MFMC budget allocation

𝑐: computational budget

𝑤1: high fidelity model evaluation cost

𝑤2: low fidelity model evaluation cost

𝜏: ratio of number of low fidelity samples to high fidelity samples

𝑛 =
𝑐

𝑤1 + 𝑤2𝜏
, 𝑚 = 𝜏𝑛, 𝜏 =

𝑤1𝜌1,2
2

𝑤2(1 − 𝜌1,2
2 )
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Code structure

• Class MFMC

• Class Kriging

• Class DiscKriging

• Class MFKriging

𝑓 1 𝑧∗ = 𝛼𝑓 2 𝑧∗ + 𝛿 𝑧∗
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Code structure

Class MFMC

• def stats: Compute statistics 𝜎1, 𝜎2, 𝜌1,2 

• def alloc: Compute sample allocations 𝑛, 𝑚

𝑛 =
𝑐

𝑤1 + 𝑤2𝜏
, 𝑚 = 𝜏𝑛, 𝜏 =

𝑤1𝜌1,2
2

𝑤2(1 − 𝜌1,2
2 )
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Code structure

Class Kriging, DiscKriging

• Def neg_loglikeli: Evaluate negative log likelihood

max
𝜃,𝜎𝑒

2
log 𝑝(𝑦 1 |𝜃, 𝜎𝑒

2)  

= −
1

2
𝑦 1 ⊤

𝑘 𝑧, 𝑧; 𝜃 + 𝜎𝑒
2𝐼 −1𝑦 1 + log 𝑘 𝑧, 𝑧; 𝜃 + 𝜎𝑒

2𝐼 + 𝑛 log 2𝜋 

Cholesky decomposition

𝑘 𝒛, 𝒛; 𝜃 + 𝜎𝑒
2𝐼 = 𝐿𝐿⊤

• Def train: Train single fidelity Kriging model

• Def predict: Compute posterior mean and variance at unseen points
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Code structure

Class MFKriging

•  Def train: Train low fidelity and discrepancy Kriging models

•  Def predict: Compute posterior mean and variance at unseen points
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Ishigami function example: Set up

• Input: 𝒙 = 𝑥1, 𝑥2, 𝑥3 , 𝑥𝑖 ∼ 𝒰(−𝜋, 𝜋)

• High fidelity model

𝑎 = 5, 𝑏 = 0.1

𝑓 1 𝒙 = sin 𝑥1 + 𝑎sin2 𝑥2  +  𝑏𝑥3
4 sin 𝑥1 ,

• Low fidelity model

𝑓 2 𝒙 = sin 𝑥1 + 0.6𝑎sin2 𝑥2  + 9𝑏𝑥3
2 sin 𝑥1 ,

• Cost = [1, 0.1]

• Statistics: 𝜎1 = 3.29,σ2 = 3.53, 𝜌1,2 = 0.9465
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𝜏 =
𝑚

𝑛

  At computational budget 100 

Error comparable with 𝜏 =8
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Ishigami function example: Results



Wing structural analysis problem: Set up

• Input: 4 wing geometry parameters

Wing span, dihedral, twist, sweep angles 

• Output: maximum von Mises stress

• High fidelity: higher rib count

• Low fidelity: lower rib count

• Cost = [5.4, 4.7] CPU s

• Statistics:

𝜎1 = 9131.61,σ2 = 8838.04, 𝜌1,2 = 0.9732 
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High fidelity Low fidelity

Source: Perron, C., Rajaram, D., & Mavris, D. N. (2021). Multi-fidelity non-intrusive reduced-order modelling 
based on manifold alignment. Proceedings of the Royal Society A, 477(2253), 20210495.



Error comparable with 𝜏 = 4
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Wing structural analysis problem: Results

𝜏 =
𝑚

𝑛

  At computational budget 1,620 CPU s 



Summary and conclusion

• Proposed MFMC budget allocation strategy for hierarchical Kriging

• Hierarchical Kriging with MFMC allocation achieves comparable accuracy

• MFMC allocation functions as a practical guideline for sample allocation
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