Motivation

Problem statement

Methods

....

:-f----

Structu

pproximatio

Results

DD ----

Damage

Computati

times

and conclusions

Future work

Digital twin-driven statistical fatigue life prediction of a damaged structure

Dayoung Kang

Department of Aerospace Engineering

Oct 20, 2023

Motivation 1/13

Digital twin

Virtual replica of a physical system

Three main components: Physical entity, digital entity, and data stream

Figure 1: Digital twin example: wind turbine

- Diagnose the status of a defect by updating a virtual model based on sensor data of a physical asset
- Realize condition-based monitoring (CBM) that improve safety and reduce operating costs at the same time

Motivation

Problem

Method

inference

analysis

Results

scenarios Computation

Summary

and conclusion

Future wo

Motivation 2/13

Motivation

Problem

Method

Structural analysis

approxima Results

scenarios Computatio

Summary and

Future wor

Target application: High-pressure hydrogen storage vessel for hydrogen refueling station

- Exposed to various damage sources that can cause physical defects during the transportation and loading/unloading
- Relieve safety concerns by monitoring damaged pressure vessel
- From periodic maintenance (expensive) to only when needed

Figure 2: Storage, transportation, and charging process of a vessel[†]

[†] Reddi, K., Mintz, M., Elgowainy, A., & Sutherland, E. (2016). Challenges and opportunities of hydrogen delivery via pipeline, tube-trailer, LIQUID tanker and methanation-natural gas grid. Hydrogen science and engineering: materials, processes, systems and technology, 849-874.

Motivation

Problem

Metho

Structural analysis Reduced basi approximation

RB results

Damage scenarios Computation

Summary

conclusions

Previous research

- Digital twin based on a finite element (FE) model
 - Accurate but computationally expensive
 - Not ideal for digital twin application
- Reduced basis (RB) method[†]
 - Physics-driven reduced-order modeling
 - Achieve a significant reduction in computational time

Goal

Digital twin-driven fatigue life prediction of a defected vessel using RB method

[†]Hesthaven, J. S., Rozza, G., & Stamm, B. (2016). Certified reduced basis methods for parametrized partial differential equations (Vol. 590). Berlin: Springer.

Problem

Metho

Bayesian inference Structural

Reduced by approximal Results

Damage scenarios Computatio

Summary and

Future wor

Goal: predict number of cycles to failure $N_{\rm f}$ for condition-based maintenace

- ullet Estimate $N_{
 m f}$ as the dent size grows
- Consider uncertainties in system parameters $\mu=(E,\nu,p,d)$ E: Young's modulus, ν : Poisson's ratio, p: internal pressure, d: dent size
- $N_{\rm f} = f(\underline{E, \nu, p, d})$, unknowns are must be estimated from strain data y_0

Figure 3: Overview of a fatigue life prediction using digital twin

MethodsBayesian inference

Motivation

Problem

Method

Bayesian

Structural analysis

Results

RB result

Computation times

Summary and conclusion

Future wor

Bayesian inference

 Infer unknown system states (parameters) in the form of posterior distribution based on strain measurement

Figure 4: Concept of a Bayesian inference

- Markov-Chain Monte Carlo (MCMC) simulation[†]
 - Samples parameters from the posterior distribution
 - Computationally expensive due to large number of evaluations

[†] Stark, P. B., & Tenorio, L. (2010). A primer of frequentist and Bayesian inference in inverse problems. Large-scale inverse problems and quantification of uncertainty, 9-32.

Methods Structural analysis model

Motivation

Problem

Metho

Bayesia

Structural analysis

Reduced ba

Results RB result

Damage scenarios

times

and conclusions Model configuration

Figure 5: Damaged pressure vessel model

Boundary conditions

Figure 6: Boundary conditions of a damaged vessel model

High-fidelity FE system

$$A_{\mathcal{N}}(\mu)u_{\mathcal{N}}(\mu)=f_{\mathcal{N}}(\mu)$$

 $A_{\mathcal{N}}(\mu) \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}$: Stiffness matrix

 $u_{\mathcal{N}}(\mu) \in \mathbb{R}^{\mathcal{N}}$: FE solution (displacement) vector

 $f_{\mathcal{N}}(\mu) \in \mathbb{R}^{\mathcal{N}}$: Load vector

Future work

FE system

$$A_{\mathcal{N}}(\mu)u_{\mathcal{N}}(\mu) = f_{\mathcal{N}}(\mu) \tag{1}$$

Idea: Approximate Equation (1) in span(B)

 $B \in \mathbb{R}^{\mathcal{N} imes N}$: Reduced basis function matrix $(N \ll \mathcal{N})$

Approximate solution

$$u_{\mathcal{N}}(\mu) \approx Bu_N(\mu)$$
 (2)

 $u_N(\mu) \in \mathbb{R}^N$: Reduced basis solution vector

Through Galerkin projection to Equation 1,

$$B^{T}A_{\mathcal{N}}(\mu)Bu_{N}(\mu) = B^{T}f_{\mathcal{N}}(\mu)$$
(3)

Here, for computational efficiency, RB does affine decomposition,

$$\underbrace{\sum_{q=1}^{Q_a} \theta_a^q(\mu) \underbrace{B^{\mathsf{T}} A_{\mathcal{N}}^q B}_{\text{offline}} u_N(\mu) = \sum_{q=1}^{Q_f} \theta_f^q(\mu) \underbrace{B^{\mathsf{T}} f_{\mathcal{N}}^q}_{\text{offline}}}_{\text{online}}$$

 $\theta_a^q(\mu), \theta_f^q(\mu)$: parameter μ -dependent functions

From FE dimension $\mathcal{N}=251,715$, reduced to N=48.

Figure 7: Error convergence for RB training

Using a total of 625 parameter samples,

Table 1: RB model verification compared to FE model

Output	Relative error (%)		
Displacement norm	Min.	1.59×10^{-6}	
	Avg.	3.08×10^{-2}	
	Max.	7.70×10^{-2}	
von Mises stress	Min.	1.80×10^{-6}	
	Avg.	4.98×10^{-2}	
	Max.	1.25×10^{-1}	

Problem

Method

inference Structura

analysis Reduced bas approximation

Results
RB results
Damage

scenarios Computation times

and conclusion

Future work

Scenario 1: vessel with initially identified dent size d=1 cm

• Number of MCMC samples: 10⁴

• Truth: $\mu_d=1$ cm

Figure 8: Posterior states estimates of a dent size for scenario 1

Figure 9: Number of cycles to failure for scenario 1

Future work

Scenario 2: vessel with enlarged dent size d=3 cm

- Number of MCMC samples: 10⁴
- Truth: $\mu_d = 3$ cm

Figure 10: Posterior states estimates of a dent size for scenario 2

Figure 11: Number of cycles to failure for scenario 2

Results Computational times

Computational times

Achieved rapid simulations by significantly reducing the dimension

• From FE dimension $\mathcal{N}=251,715$ to RB dimension N=48 (Reduction rate: 5.24×10^3)

Offline/online computational time

Single evaluation times

Table 2: Comparison of single evaluation times between FE and RB models

	FE model	RB model	Speed up
Offline time	-	2 hr 33 min	-
Averaged online time	1 min 44 s	$1.59{ imes}10^{-4}~{ m s}$	$6.52{\times}10^5$

Total evaluation times for inverse state estimation

Table 3: Comparison of total evaluation times between FE and RB models

FE analysis time	RB analysis time	Speed up
41 days 12 hr 13 min	2 min 53 s	2.07×10^4

Metho

Structural analysis Reduced bas

RB result

scenarios Computation

Summary and conclusions

Future wo

Summary

- Proposed a statistical fatigue life monitoring scheme that relies on an RB digital twin
 - Inverse state estimation
 - 2 Equivalent stress evaluation
 - 8 Fatigue life prediction
 - 4 Condition-based maintenance (CBM)
- The proposed strategy is demonstrated with a damaged pressure vessel.
- Thanks to the RB digital twin, entire process was accelerated compared to FE digital twin while retaining accuracy.

Conclusion

 Proposed fatigue life monitoring strategy assisted with an RB digital twin has shown to be effective for the CBM of a damaged structure. Future work 13/13

Motivation

Problem statement

Methods

Bayesian
inference
Structural
analysis

Results
RB results
Damage

Computation times

and

Future work

Overcome challenges of model updating by using a component-based approach

 Effectively update a model by replacing a component with a defected component after identifying new damage locations

Figure 12: Digital twin of a pressure vessel using a component-based approach[†]

[†] Akselos, Case study: digital twin of pressure vessel,

Thank you

References

Motivation

Problem statement

Bayesian inference Structural

Structural analysis Reduced basis approximation

RB results
Damage
scenarios

Computation times

Summary and conclusions

Future work

- Reddi, K., Mintz, M., Elgowainy, A., & Sutherland, E. (2016). Challenges and opportunities
 of hydrogen delivery via pipeline, tube-trailer, LIQUID tanker and methanation-natural gas
 grid. Hydrogen science and engineering: materials, processes, systems and technology,
 849-874.
 - [2] Febrianto, E., Butler, L., Girolami, M., & Cirak, F. (2022). Digital twinning of self-sensing structures using the statistical finite element method. Data-Centric Engineering, 3, e31.
- [3] Ramancha, M. K., Astroza, R., Conte, J. P., Restrepo, J. I., & Todd, M. D. (2020). Bayesian nonlinear finite element model updating of a full-scale bridge-column using sequential monte carlo. In Model Validation and Uncertainty Quantification, Volume 3 (pp. 389-397). Springer, Cham.
- [4] Wang, T., Liu, Z., Liao, M., & Mrad, N. (2020, November). Life prediction for aircraft structure based on Bayesian inference: towards a digital twin ecosystem. In Annual Conference of the PHM Society (Vol. 12, No. 1, pp. 8-8).
- [5] Fang, X., Wang, H., Li, W., Liu, G., & Cai, B. (2022). Fatigue crack growth prediction method for offshore platform based on digital twin. Ocean Engineering, 244, 110320.
- [6] Karve, P., Guo, Y., Kapusuzoglu, B., Mahadevan, S., & Haile, M. (2020, November). Digital twin approach for intelligent operation planning and health management of mechanical systems. In Annual Conference of the PHM Society (Vol. 12, No. 1, pp. 1-9).
- [7] Hesthaven, J. S., Rozza, G., & Stamm, B. (2016). Certified reduced basis methods for parametrized partial differential equations (Vol. 590). Berlin: Springer.

References

Motivation

Problem statement

Methods

Bayesian
inference
Structural
analysis
Reduced basis

RB results

Damage scenarios

Summary and

Future wor

- [8] Stark, P. B., & Tenorio, L. (2010). A primer of frequentist and Bayesian inference in inverse problems. Large-scale inverse problems and quantification of uncertainty, 9-32.
- [9] Kang, S., & Lee, K. (2021). Real-time, high-fidelity linear elastostatic beam models for engineering education. Journal of Mechanical Science and Technology, 35(8), 3483-3495.
- [10] The American Society of Mechanical Engineers, ASME Boiler & Pressure Vessel Code, Section VIII Division 2, 2019 Edition
- [11] Akselos, Case study: digital twin of pressure vessel, https://www.akselos.com/resources-detail/digital-twins-of-pressure-vessels-unlocking-the-full-potential-of-ogtcs-robotic-inspection-joint-industry-project-with-the-oil-and-gas-technology-center

Fatigue analysis

Linear elasticity problem

Geometric parameterization

interpolation method (EIM)

maps

Appendix

Methods Reduced basis approximation

analysis Linear elasticity problem Geometric pa rameterizatioi

Empirical interpolation method (E

Paramet

Ex) Finite element (FE) dimension $\mathcal{N}=3$, Reduced basis (RB) dimension N=2

Figure 13: Concept of RB method[†]

† Kang, S., & Lee, K. (2021). Real-time, high-fidelity linear elastostatic beam models for engineering education. Journal of Mechanical Science and Technology, 35(8), 3483-3495.

Methods Fatigue analysis

Fatigue analysis Linear

problem Geometric rameteriza

method Paramet Steps for fatigue analysis in ASME Pressure Vessel Code[†]

- Determine the load history of the vessel.
- 2 Determine the individual cycles and define the total number of cyclic stress ranges in the load history.
- **3** Determine the equivalent stress range for the cycle.
- Oetermine the effective alternating equivalent stress amplitude for the cycle.
- Determine the number of cycles to failure for the alternating equivalent stress.

Figure 14: Fatigue curve of a vessel steel[†]

analysis Linear elasticity problem

Geometric parameterization
Empirical
interpolation
method (FIN

• Strong form $\frac{\partial}{\partial x_i^{\rm o}(\mu)} \left(C_{ijkl}^{\rm o}(\mu) \frac{\partial u_k^{\rm o}(\mu)}{\partial x_l^{\rm o}(\mu)} \right) = 0, \quad \text{in} \quad \Omega^{\rm o}(\mu)$ (4)

Boundary conditions

$$u^0 = 0$$
 on $\Gamma_1^0, \Gamma_2^0, \quad C_{ijkl}^0 \frac{\partial u_k^0}{\partial x_i^0} e_{n,j} = q e_{n,i}$ on Γ_3^0 (5)

Figure 15: Boundary conditions of a damaged vessel model

Computational subdomains

Figure 16: Computational subdomains of a damaged vessel

Weak form

$$\sum_{s=1}^{3} \int_{\Omega_{s}^{0}(\mu)} \frac{\partial v_{i}^{0}}{\partial x_{i}^{0}(\mu)} C_{ijkl}^{0}(\mu) \frac{\partial u_{k}^{0}(\mu)}{\partial x_{i}^{0}(\mu)} d\Omega^{0}(\mu) = \int_{\Gamma_{3}^{0}(\mu)} q^{0}(\mu) e_{n,i}^{0}(\mu) v_{i}^{0} d\Gamma^{0}(\mu), \quad \forall v^{0} \in X^{0}(\mu) \quad (6)$$

- ullet Weak form in parameter-independent reference domain Ω
 - Required to map geometric parameter μ_d efficiently
 - Enabled by a Jacobian matrix J_Φ of a parametric map $\Phi(x;\mu)$

Methods

Geometric parameterization

Geometric na-

rameterization

- Parametric map $\Phi(x; \mu) = x^{0}(x; \mu) = x + \Delta x_{d}(\mu)$
- Geometric parametrization for dent size μ_d
 - Transformation ratio: variate the dent size along the ratio $\dfrac{\mu_{
 m d}-d_{
 m ref}}{\|x\|_{
 m L_2}}$
 - Geometric parametrization for each subdomain

Subdomain 1:
$$x^{0}(x; \mu) = x + \frac{\mu_{\mathbf{d}} - d_{\text{ref}}}{\|x\|_{\mathbf{L}_{2}}} x$$
Subdomain 2: $x^{0}(x; \mu) = x + \left(\frac{\mu_{\mathbf{d}} - d_{\text{ref}}}{\|x\|_{\mathbf{L}_{2}}}\right) \left(\frac{\|x\|_{\mathbf{L}_{2}} - r_{\text{ref,out}}}{r_{\text{ref,in}} - r_{\text{ref,out}}}\right) x$

Figure 17: Schematic representation of mapping functions

Weak form in a reference domain

$$\sum_{s=1}^{3} \int_{\Omega_{s}} \frac{\partial v_{l}}{\partial x_{j}} C_{ijkl,s}(x;\mu) \frac{\partial u_{k}(\mu)}{\partial x_{l}} d\Omega = \int_{\Gamma_{3}} q(x;\mu) e_{n,i} v_{i} d\Gamma, \quad \forall v \in X,$$
 (7)

where

$$C_{ijkl,s}(x;\mu) = [J_{\Phi_s}^{-1}(x;\mu)]_{jj'} C_{ij'kl'}^{0}(\mu) [J_{\Phi_s}^{-1}(x;\mu)]_{ll'} |J_{\Phi_s}(x;\mu)|,$$

$$q(x;\mu) = q^{0}(\mu) |J_{\Phi_s}(x;\mu)e_{n}|.$$

Damage scenarios [1/2]

Geometric na-

rameterization

• Scenario 1: vessel with initially identified dent size μ_d =1 cm (number of MCMC samples: 10^4)

Figure 18: Statistical fatigue life prediction of a damaged vessel for scenario 1

Table 4: Posterior estimates and credible intervals for scenario 1

Parameters	True	Estimated mean	Estimated stdv	95% CI
E [GPa]	191	189.3	1.49	[186.40, 192.25]
u [-]	0.3000	0.3013	0.0014	[0.2987, 0.3040]
$p\ [MPa]$	40	40.05	0.26	[39.55, 40.55]
d [m]	0.0100	0.0100	0.00015	[0.0097, 0.0103]

stdv: standard deviation, CI: credible interval

Damage scenarios [2/2]

Geometric na-

rameterization

• Scenario 2: vessel with enlarged dent size μ_d =3 cm (number of MCMC samples: 10^4)

Figure 19: Statistical fatigue life prediction of a damaged vessel for scenario 2

Table 5: Posterior estimates and credible intervals for scenario 1

Parameters	True	Estimated mean	Estimated stdv	95% CI
E [GPa]	191	191.2	1.83	[187.60, 194.76]
u [-]	0.3000	0.3001	0.0019	[0.2964, 0.3038]
$p\ [MPa]$	40	40.00	0.29	[39.43, 40.56]
d [m]	0.0300	0.0300	0.00007	[0.0299, 0.0302]

stdv: standard deviation, CI: credible interval

Appendix Empirical interpolation method (EIM)

Fatigue analysis Linear elasticity problem Geometric pa rameterizatio Empirical interpolation

interpolation method (EIM) Used to ensure affine parametric dependence for an offline/online decomposition in RB analysis

$$\sum_{q=1}^{Q_a} \theta_a^q(\mu) \underbrace{\mathbb{B}^{\mathsf{T}} A_{\mathcal{N}}^q \mathbb{B}}_{\text{offline}} u_N(\mu) = \sum_{q=1}^{Q_f} \theta_f^q(\mu) \underbrace{\mathbb{B}^{\mathsf{T}} f_{\mathcal{N}}^q}_{\text{offline}}$$

online

Approximated non-affine function to affine function by

$$\begin{split} \Phi(x;\mu) &= \textit{M}_{\textit{EIM}}(x;\mu) + \textit{e}_{\textit{EIM}}(x;\mu) \\ &= \sum_{\textit{i}=1}^{\textit{Q}} \theta_{\textit{j}}(\mu) h_{\textit{j}}(x) + \textit{e}_{\textit{EIM}}(x;\mu) \end{split}$$

 $\theta(\mu)$: interpolation coefficients

h(x): EIM basis functions

Figure 20: Error convergence for EIM training

 Applied to a vessel problem due to non-affine mapping functions represented as: Fatigue analysis Linear elasticity problem

Geometric parameterization Empirical

Parametric maps

Figure 21: Computational subdomains of a damaged vessel

Table 2: Parametric maps on subdomains

Subdomain	Parametric map $M(x;\mu)$
Ω_1	$\begin{bmatrix} x_1^{\rm o} \\ x_2^{\rm o} \\ x_3^{\rm o} \end{bmatrix} = \begin{bmatrix} x_1 + (x_1 - x_{1,0}) \frac{(\mu_4 - d_{\rm ref})}{\ x\ _{\rm L_2}} \\ x_2 + (x_2 - x_{2,0}) \frac{(\mu_4 - d_{\rm ref})}{\ x\ _{\rm L_2}} \\ x_3 + (x_3 - x_{3,0}) \frac{(\mu_4 - d_{\rm ref})}{\ x\ _{\rm L_2}} \end{bmatrix}$
Ω_2	$\begin{bmatrix} x_1^{\text{o}} \\ x_2^{\text{o}} \\ x_3^{\text{o}} \end{bmatrix} = \begin{bmatrix} x_1 + (x_1 - x_{1,0}) \frac{(\mu_4 - d_{\text{ref}})}{\ x\ _{L_2}} \\ x_2 + (x_2 - x_{2,0}) \frac{(\mu_4 - d_{\text{ref}})}{\ x\ _{L_2}} \\ x_3 + (x_3 - x_{3,0}) \frac{(\mu_4 - d_{\text{ref}})}{\ x\ _{L_2}} \end{bmatrix}$ $\begin{bmatrix} x_1^{\text{o}} \\ x_2^{\text{o}} \\ x_3^{\text{o}} \end{bmatrix} = \begin{bmatrix} x_1 + (x_1 - x_{1,0}) \frac{(\ x\ _{L_2} - r_{\text{ref},\text{out}}}{r_{\text{ref},\text{in}} - r_{\text{ref},\text{out}}} \\ x_2 + (x_2 - x_{2,0}) \frac{(\ x\ _{L_2} - r_{\text{ref},\text{out}}}{r_{\text{ref},\text{in}} - r_{\text{ref},\text{out}}} \\ x_3 + (x_3 - x_{3,0}) \frac{(\ x\ _{L_2} - r_{\text{ref},\text{out}}}{r_{\text{ref},\text{in}} - r_{\text{ref},\text{out}}} \end{bmatrix} \begin{bmatrix} \frac{(\mu_4 - d_{\text{ref}})}{\ x\ _{L_2}} \\ \frac{(\mu_4 - d_{\text{ref}})}{\ x\ _{L_2}} \end{bmatrix}$
Ω_3	$\begin{bmatrix} x_1^0 \\ x_2^0 \\ x_3^0 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$