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Digital twin
® Virtual replica of a physical system
® Three main components: Physical entity, digital entity, and data stream
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Figure 1: Digital twin example: wind turbine

® Diagnose the status of a defect by updating a virtual model based on
sensor data of a physical asset

® Realize condition-based monitoring (CBM) that improve safety and
reduce operating costs at the same time
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Target application: High-pressure hydrogen storage vessel for hydrogen
refueling station

Motivation

Problem
statement

® Exposed to various damage sources that can cause physical defects
during the transportation and loading/unloading

Methods

Bayesian
inference

® Relieve safety concerns by monitoring damaged pressure vessel
® From periodic maintenance (expensive) to only when needed

Structural
analysis
Reduced basis
approximation

Semi-Central Production Plant

Results
RB results Transmission
Plpellne'\
Damage N
scenarios = - =
Loading Bays

Computationa Compressor %E‘d

times
Compressor
Summary i Tube Trailer Delivered
| ! Storage Distribution Gas Terminal | to Fueling Station

and

conclusions Refrigeration Unit

Future work

elivered Tube Trailer

= () i :Compressor

High Pressure

-.‘ E Buffer Storage
O O

Dispenser

I

Central Production Plant

Figure 2: Storage, transportation, and charging process of a vesselt

1 Reddi, K., Mintz, M., Elgowainy, A., & Sutherland, E. (2016). Challenges and opportunities of hydrogen
delivery via pipeline, tube-trailer, LIQUID tanker and methanation-natural gas grid. Hydrogen science and
engineering: materials, processes, systems and technology, 849-874.
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Previous research
o Digital twin based on a finite element (FE) model

® Accurate but computationally expensive
® Not ideal for digital twin application

® Reduced basis (RB) method

® Physics-driven reduced-order modeling
® Achieve a significant reduction in computational time

Goal

Digital twin-driven fatigue life prediction of a defected vessel
using RB method

THesthaven, J. S., Rozza, G., & Stamm, B. (2016). Certified reduced basis methods for parametrized partial
differential equations (Vol. 590). Berlin: Springer.
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Goal: predict number of cycles to failure N; for condition-based maintenace

Vietivation ® Estimate NN; as the dent size grows
Problem . . . .
e ® Consider uncertainties in system parameters . = (E, v, p, d)
Methods E: Young’'s modulus, v: Poisson’s ratio, p: internal pressure, d: dent size
Bayesian . .
o ® N; = f(E,v, p,d), unknowns are must be estimated from strain data o
Structural ~———
analysis unknowns
Reduced basis
Step 1: Step 4:
ez Inverse state estimation Condition-based maintenance
R resules Prior distribution of states Maintenance based on
ez 1Py~ (o, 00,) i minimum Ny
Computationa - . Physical space 7(N¢|Ovonmax)
times Strain data from @ : Strain gauges ——
strain gauges {yo,}{=1 = p - n-ilnllll»Nf
Summary y \ /

and

eoalEEs Bayesian inference with —— 2ass ("~ Samples of fatigue )
Future work two MCMC algorithms Virtual space life prediction

7 (Nel0yonmax)

Posterior samples of

A von Mises stress Samples of maximum Ne
state estimates field evaluation von Mises stress ¥
- - —
(1Yo, }i=1) 7(0yonmax|A) Stress-life approach

Lﬂ““hﬁl —) L:""I"i"'» Sagm

Step 2: Equivalent stress evaluation Step 3: Fatigue life prediction

Figure 3: Overview of a fatigue life prediction using digital twin
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Bayesian inference

Motivation . .
® Bayesian inference
Problem
statement ® Infer unknown system states (parameters) in the form of posterior
Vet distribution based on strain measurement
Bayesian
inference
Structural Measurement likelihood 7 (y, |p) :
Sralze Probability of observing data y,
Reduced basis
Results
RB results Bayesian inference Prior distribution m(y) :
B T(1|yo) < (Yo lp) m(p) Initial belief
Computational
times
Summary Posterior distribution m(u|y,) :
e Updated belief
conclusions
Future work Figure 4: Concept of a Bayesian inference

® Markov-Chain Monte Carlo (MCMC) simulation’

® Samples parameters from the posterior distribution
® Computationally expensive due to large number of evaluations

T Stark, P. B., & Tenorio, L. (2010). A primer of frequentist and Bayesian inference in inverse problems.
Large-scale inverse problems and quantification of uncertainty, 9-32.
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Methods 6/13

Structural analysis model

® Model configuration

B : Strain gauges
=
[} o ] 7}

Figure 5: Damaged pressure vessel model

® Boundary conditions
3 FTrT T T T T T T I T T T T T T T T T T T T T T T iieT
0
d vE bbb bbb bbb p bbbl r,°
Figure 6: Boundary conditions of a damaged vessel model

® High-fidelity FE system

An () un (p) = fa (1)

An(p) € RNV*N: Stiffness matrix
upn(p) € RV: FE solution (displacement) vector
fv(p) € RV: Load vector
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Methods

Reduced basis approximation
FE system
An () un (1) = fiv (1)
Idea: Approximate Equation (1) in span(B)
B € RV*N: Reduced basis function matrix (N < N)

Approximate solution
un (p) =~ Bun ()

un(p) € RY: Reduced basis solution vector

Through Galerkin projection to Equation 1,

B" An (1) Bun (1) = B' fiv (1)

Here, for computational efficiency, RB does affine decomposition,

Z 02(1) B'A{, Bun(u Z 07(u) B' £
R/—’ \/—/
offline offline

online

HZ(M),HJ?(N): parameter u-dependent functions

7/13

(2)
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Results
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From FE dimension N = 251,715, reduced to N = 48.

1x10°
1x107"
1x1072
1x1073
151074

1%1079

Maximum RB relative error

Ty

1

5 10 15 20 25 30 35 40 4548
Number of RB functions
Figure 7: Error convergence for RB training

Using a total of 625 parameter samples,

Table 1: RB model verification compared to FE model

Output Relative error (%)
Min.  1.59 x107°
Displacement norm  Avg. 3.08 x 1072
Max.  7.70 x 1072
Min.  1.80 x 1078
von Mises stress Avg.  4.98 x 1072
Max.  1.25:x 1071
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Results 9/13
Damage scenarios [1/2]

Scenario 1: vessel with initially identified dent size d=1 cm
® Number of MCMC samples: 10*
® Truth: ug=1cm

115=1.00 cm Min. Ny = 1.01x107
1000 1000 -
g 5 I
() f=1 i Il
= 500 3]
g’" : % 500 |
=9 | = T n
0l . j
oL b
9.5 d 10 1053 1 1.5 2 2.5
(m) 10 Nt (cycles) x10”
Figure 8: Posterior states estimates of a dent Figure 9: Number of cycles to failure for

size for scenario 1 scenario 1
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Damage scenarios [2/2]

Motivation

Problem

statement . . .

— Scenario 2: vessel with enlarged dent size d=3 cm
Bz ® Number of MCMC samples: 10*

D ® Truth: ug =3 cm

Reduced basis
approximation

Results 114=3.00 cm Min. N¢ = 1.68x105

RB results 1500 ’

Damage

scenarios > 1000

21000 o)

times g g

Summary g 500 g 500 .

and = [ H = ﬂ H

conclusions Il 7

Future work 0 -~ ) k. 0 P ﬂ

0.0298 0.03 0.0302 s s 2 s
d (m) N (cycles) «10°
Figure 10: Posterior states estimates of a dent Figure 11: Number of cycles to failure for

size for scenario 2 scenario 2
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Computational times

Motivation

N Achieved rapid simulations by significantly reducing the dimension

statement ® From FE dimension N' =251,715 to RB dimension N = 48 (Reduction
Methods 3

A rate: 5.24x10%)

inference

oy Offline/online computational time

Reduced basis

T ® Single evaluation times

Results

:i“‘i“s Table 2: Comparison of single evaluation times between FE and RB models

scenarios

Computational FE model RB model Speed up
times

N Offline time - 2 hr 33 min -

and Averaged online time 1 min44s 159x107%s  6.52x10°

conclusions

Future work

Total evaluation times for inverse state estimation

Table 3: Comparison of total evaluation times between FE and RB models

FE analysis time RB analysis time Speed up
41 days 12 hr 13 min 2 min 53 s 2.07x10*
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Summary and conclusions 12/13

Summary
® Proposed a statistical fatigue life monitoring scheme that relies on an RB
digital twin

@ Inverse state estimation
® Equivalent stress evaluation
© Fatigue life prediction
® Condition-based maintenance (CBM)

® The proposed strategy is demonstrated with a damaged pressure vessel.

® Thanks to the RB digital twin, entire process was accelerated compared
to FE digital twin while retaining accuracy.

Conclusion

® Proposed fatigue life monitoring strategy assisted with an RB digital twin
has shown to be effective for the CBM of a damaged structure.
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Future work 13/13

Overcome challenges of model updating by using a component-based
approach

® Effectively update a model by replacing a component with a defected
component after identifying new damage locations

-

Pristine Model Shell component 2D UV mapping
(d)

Automated re-analysis Thicknesses mapped to
and reporting Digital Twin

Figure 12: Digital twin of a pressure vessel using a component-based approachJr

Thickness profile

T Akselos, Case study: digital twin of pressure vessel,
https://www.akselos.com /resources-detail /digital-twins-of-pressure-vessels-unlocking-the-full-potential-of-ogtcs-
robotic-inspection-joint-industry-project-with-the-oil-and-gas-technology-center
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Reduced basis approximation

s Ex) Finite element (FE) dimension ' = 3,
s Reduced basis (RB) dimension N = 2

Geometric pa-
rameterization

Empirical
interpolation
method (EIM)
Parametric
maps.

A 4

C N

XN =span {é’l}

i=1

Figure 13: Concept of RB method?

T Kang, S., & Lee, K. (2021). Real-time, high-fidelity linear elastostatic beam models for engineering education.
Journal of Mechanical Science and Technology, 35(8), 3483-3495.
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Fatigue analysis
Steps for fatigue analysis in ASME Pressure Vessel Codef
@ Determine the load history of the vessel.

2/8

® Determine the individual cycles and define the total number of cyclic
stress ranges in the load history.

® Determine the equivalent stress range for the cycle.

@ Determine the effective alternating equivalent stress amplitude for the
cycle.

@ Determine the number of cycles to failure for the alternating equivalent
stress.

10000

g

Stress Amplitude, MPa

H

10
T00E-01  100EW02  100E:03  T00E:04  100Es05  100Es06  100Es7  100Es08  100E=09
Cycles.

TO0EA0 100Ee1t

Figure 14: Fatigue curve of a vessel steel®

T The American Society of Mechanical Engineers, ASME Boiler & Pressure Vessel Code, Section VIII Division 2,
2019 Edition
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Linear elasticity problem

® Strong form d o Aud () . o
Cig (1 =0, in Q(u 4
3)6]‘.’(;1,) ljkl( )8x;’(p) ( ) ( )
® Boundary conditions o
u
u’=0 on IV T, C;kla—x(’)‘en,j =ge,; on T} (5)
1

3 TT T T T T T T I T T T T T T T T T T T T T T T ifioT
e

AN bbby

Figure 15: Boundary conditions of a damaged vessel model

® Compuational subdomains
[ : Subdomain 1 (Q,) M : Subdomain 2 () [ : Subdomain 3 (Q3)

Figure 16: Computational subdomains of a damaged vessel
® Weak form
3 0 0
ovf ouy (u)
[ st 5
Q9 (1) ij (1)

d o — o 0_ O d o o 0
et 477 /rg(u)q (W)€ ()1 dT°(p), Vi° € X°(u)  (6)

s=1

® \Weak form in parameter-independent reference domain 2
® Required to map geometric parameter ug efficiently
® Enabled by a Jacobian matrix Jp of a parametric map ®(x; )
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Geometric parameterization

® Parametric map ®(x; ) = x°(x; 1) = x + Axg(p)
® Geometric parametrization for dent size pg

® Transformation ratio: variate the dent size along the ratio %ldmf
x|,
® Geometric parametrization for each subdomain
. — d,
Subdomain 1: x°(x; pu) = x + Hd = Cref
llxllL,
. - llxlly, —
Subdomain 2: x°(x; p) = x + (“d d“’f) ( Lp © Trefout }
HXHLZ Tref,in — Tref,out

(2)
Figure 17: Schematic representation of mapping functions
® Weak form in a reference domain

v; Qug(p) /
—L Cijpr s (2 p) ———2dQ = X;p)ey v dr, Vv € X,
2~ Jo, ij l]kI,x( H) ox; Ty q(x; p) n,ili
where
Cijkr,s (X5 p) = Uq;l(X; ) C;}/kl’(p‘)[]';xl(X; )l Uas (x5 1)1

q(x; n) = q° (1) Vg (x5 1) €n .

4/8
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Damage scenarios [1/2]
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® Scenario 1: vessel with initially identified dent size pg=1 cm (number of
MCMC samples: 10%)

Observation
Strain data at dent size =0.01m |
Measurement error: 5% deviation |

®@: Strain gauges

[ Prior Information
Young’s modulus E

1p=191 GPa, CV=0.025
Poisson’s ratio v

1,=0.03, CV=0.12
Internal pressure p

1,=40 MPa, CV=0.01
Dent size d

#4=0.01 m, CV=1.001

3z
2

Frequency

1000

1000

2
8

0

Inverse parameter estimation

75=189.3 GPa
1000

500

Frequency

7,=0.3013

[~ Forward response prediction ]

. 1000

0 -
205 230 235
Max. von Mises (MPa)

85 190 195
E (GPa) v
f1,=40.05 MPa 1000 114=0.0100 m
g .
g_ 500
g
=
- o 0 _
39 40 41 9.5 10 10.5
p (MPa) d(m) 403

00—
0296 0.3 0304

Fatigue life prediction

Min. Ng¢ = 1.01 x 107
1000

500

Frequency

1 L5 2 25

Ni (cycles) w107

Figure 18: Statistical fatigue life prediction of a damaged vessel for scenario 1

Table 4: Posterior estimates and credible intervals for scenario 1

Parameters True Estimated mean  Estimated stdv 95% Cl
E [GPa] 191 189.3 1.49 [186.40, 192.25]
v [] 0.3000 0.3013 0.0014 [0.2987, 0.3040]
p [MPa] 40 40.05 0.26 [39.55, 40.55]
d [m] 0.0100 0.0100 0.00015 [0.0097, 0.0103]

stdv: standard deviation, Cl: credible interval
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Damage scenarios [2/2]
- ® Scenario 2: vessel with enlarged dent size g=3 cm (number of MCMC
anayss samples: 10%)

Linear

;‘;’Q“;‘L—V [ Observation — Inverse parameter estimation [ Forward response prediction
Strain data at dent size = 0.03 m o PS
ic pa- A =191.2 GPa =0.3001
Camile = Measurement error: 5% deviation | Be ~ My g 1000
rameterization I 1500 1500 2
. Strai . g
: Strain gauges bl ol
Empirical ] gaug g g g 500
interpolation § 1000 § 1000 <
method (EIM) u u g . g . 0
o _ - o 500 & 500 315320 325 330
Clefulds | Max. von Mises (MPa)
e ; ion ——1 Olss 190 195 %0205 03 0305 | [
Prior Information Y B (e IR Fatigue life prediction
Young’s modulus E ,\ . i — 5
15=191 GPa, CV=0.025 mp=40.00MPa " 71;=0.0300 m Min. N¢ = 1.68 x 10
Poisson’s ratio v -..1000 . 1000
z 5 z
1,=0.03, CV=0.12 5 g 1000 “:’
Internal pressure p g 500 g 500 g s
=40 MPa, CV=0.01 = = =
Dentsize d % 0 4 80208 003 00302 ir 1.8 2 22
Hqa=0.01m, CV=1.001 i p (MPa) d(m) " N (cycles) w05

Figure 19: Statistical fatigue life prediction of a damaged vessel for scenario 2

Table 5: Posterior estimates and credible intervals for scenario 1

Parameters True Estimated mean Estimated stdv 95% ClI
E [GPa] 191 191.2 1.83 [187.60, 194.76]
v [-] 0.3000 0.3001 0.0019 [0.2964, 0.3038]
p [MPa] 40 40.00 0.29 [39.43, 40.56]
d [m] 0.0300 0.0300 0.00007 [0.0299, 0.0302]

stdv: standard deviation, Cl: credible interval
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Empirical interpolation method (EIM)

® Used to ensure affine parametric dependence for an offline/online
decomposition in RB analysis

Ze" YBTALB un(p Ze" YBTfE
N—— \/—’
offline offline
online § 1x10°
o
® Approximated non-affine function to affine ¢
function by Fixio™!
(o)
(x5 ) = M (%5 1) + ez (X; 1) =
0 o %1072
£
= 0i(w)hi(x) + emn(x; )
j=1 é 1x1073
0(w): interpolation coefficients 1 2 3 4 5 6 7 8

Number of EIM basis functions
Figure 20: Error convergence for EIM
training
® Applied to a vessel problem due to non-affine mapping functions
represented as:

h(x): EIM basis functions
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Parametric maps

3 : Subdomain 1 (Q;)

I : Subdomain 2 (Q;)

[ : Subdomain 3 (Q3)

Figure 21: Computational subdomains of a damaged vessel

Table 2: Parametric maps on subdomains

Subdomain

Parametric map M (x; 11)

1+ (x1 — x10) H4 = )
. N
9 x| =[x+ (- x0) Ha al
x;) ( Hleér )
1y —
X3+ (x5 — XSYO)W
| 2
¥+ (4 — x0) [I%l|L, — Tretoout \ [ (124 — dher)
xi} ’ ""reﬁin — Tref,out ( ”-leér )
Xl|L, — Tref,out Ha — Chref
Q S| =%+ (0-x 2
2 x%) 2t ( : ZQO) Tref,in — Tref,out ”xHLz
3 o+ (x5 — X0) [1l|L, — Tretoout \ [ (124 — dhef)
L ’ Tref,in — Tref,out ”xHLZ
X7 X1
Q3 Xg = | X2
x5 X3
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