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Motivation 1/13

Digital twin
• Virtual replica of a physical system
• Three main components: Physical entity, digital entity, and data stream

Figure 1: Digital twin example: wind turbine

• Diagnose the status of a defect by updating a virtual model based on
sensor data of a physical asset

• Realize condition-based monitoring (CBM) that improve safety and
reduce operating costs at the same time
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Motivation 2/13

Target application: High-pressure hydrogen storage vessel for hydrogen
refueling station

• Exposed to various damage sources that can cause physical defects
during the transportation and loading/unloading

• Relieve safety concerns by monitoring damaged pressure vessel
• From periodic maintenance (expensive) to only when needed

Figure 2: Storage, transportation, and charging process of a vessel†

† Reddi, K., Mintz, M., Elgowainy, A., & Sutherland, E. (2016). Challenges and opportunities of hydrogen
delivery via pipeline, tube-trailer, LIQUID tanker and methanation-natural gas grid. Hydrogen science and
engineering: materials, processes, systems and technology, 849-874.
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Motivation 3/13

Previous research
1 Digital twin based on a finite element (FE) model

• Accurate but computationally expensive

• Not ideal for digital twin application

2 Reduced basis (RB) method†

• Physics-driven reduced-order modeling
• Achieve a significant reduction in computational time

Goal

Digital twin-driven fatigue life prediction of a defected vessel
using RB method

†Hesthaven, J. S., Rozza, G., & Stamm, B. (2016). Certified reduced basis methods for parametrized partial
differential equations (Vol. 590). Berlin: Springer.
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Problem statement 4/13

Goal: predict number of cycles to failure Nf for condition-based maintenace
• Estimate Nf as the dent size grows
• Consider uncertainties in system parameters µ = (E , ν,p,d)

E : Young’s modulus, ν: Poisson’s ratio, p: internal pressure, d: dent size
• Nf = f (E , ν,p,d︸ ︷︷ ︸

unknowns

), unknowns are must be estimated from strain data yo
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Figure 3: Overview of a fatigue life prediction using digital twin
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Methods 5/13
Bayesian inference

• Bayesian inference
• Infer unknown system states (parameters) in the form of posterior

distribution based on strain measurement

Figure 4: Concept of a Bayesian inference

• Markov-Chain Monte Carlo (MCMC) simulation†

• Samples parameters from the posterior distribution
• Computationally expensive due to large number of evaluations

† Stark, P. B., & Tenorio, L. (2010). A primer of frequentist and Bayesian inference in inverse problems.
Large-scale inverse problems and quantification of uncertainty, 9-32.
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Methods 6/13
Structural analysis model

• Model configuration

Figure 5: Damaged pressure vessel model

• Boundary conditions

Γ1
o Γ2

o

Γ3
o

Figure 6: Boundary conditions of a damaged vessel model

• High-fidelity FE system

AN (µ)uN (µ) = fN (µ)

AN (µ) ∈ RN×N : Stiffness matrix

uN (µ) ∈ RN : FE solution (displacement) vector

fN (µ) ∈ RN : Load vector
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Methods 7/13
Reduced basis approximation

FE system
AN (µ)uN (µ) = fN (µ) (1)

Idea: Approximate Equation (1) in span(B)

B ∈ RN×N : Reduced basis function matrix (N ≪ N )

Approximate solution
uN (µ) ≈ BuN (µ) (2)

uN (µ) ∈ RN : Reduced basis solution vector

Through Galerkin projection to Equation 1,

BT AN (µ)BuN (µ) = BT fN (µ) (3)

Here, for computational efficiency, RB does affine decomposition,
Qa∑

q=1

θ
q
a(µ)BTAq

N B︸ ︷︷ ︸
offline

uN (µ) =

Qf∑
q=1

θ
q
f (µ)BTf q

N︸ ︷︷ ︸
offline︸ ︷︷ ︸

online

θ
q
a(µ), θ

q
f (µ): parameter µ-dependent functions
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Results 8/13
RB results

From FE dimension N = 251, 715, reduced to N = 48.
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Figure 7: Error convergence for RB training

Using a total of 625 parameter samples,

Table 1: RB model verification compared to FE model

Output Relative error (%)

Displacement norm

Min. 1.59 ×10−6

Avg. 3.08 × 10−2

Max. 7.70 × 10−2

von Mises stress

Min. 1.80 × 10−6

Avg. 4.98 × 10−2

Max. 1.25 × 10−1
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Results 9/13
Damage scenarios [1/2]

Scenario 1: vessel with initially identified dent size d=1 cm

• Number of MCMC samples: 104

• Truth: µd = 1 cm

Figure 8: Posterior states estimates of a dent
size for scenario 1

Figure 9: Number of cycles to failure for
scenario 1
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Results 10/13
Damage scenarios [2/2]

Scenario 2: vessel with enlarged dent size d=3 cm

• Number of MCMC samples: 104

• Truth: µd = 3 cm

Figure 10: Posterior states estimates of a dent
size for scenario 2

Figure 11: Number of cycles to failure for
scenario 2
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Results 11/13
Computational times

Achieved rapid simulations by significantly reducing the dimension

• From FE dimension N =251, 715 to RB dimension N = 48 (Reduction
rate: 5.24×103)

Offline/online computational time

• Single evaluation times

Table 2: Comparison of single evaluation times between FE and RB models

FE model RB model Speed up

Offline time - 2 hr 33 min -

Averaged online time 1 min 44 s 1.59×10−4 s 6.52×105

• Total evaluation times for inverse state estimation

Table 3: Comparison of total evaluation times between FE and RB models

FE analysis time RB analysis time Speed up

41 days 12 hr 13 min 2 min 53 s 2.07×104
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Summary and conclusions 12/13

Summary
• Proposed a statistical fatigue life monitoring scheme that relies on an RB

digital twin

1 Inverse state estimation
2 Equivalent stress evaluation
3 Fatigue life prediction
4 Condition-based maintenance (CBM)

• The proposed strategy is demonstrated with a damaged pressure vessel.

• Thanks to the RB digital twin, entire process was accelerated compared
to FE digital twin while retaining accuracy.

Conclusion

• Proposed fatigue life monitoring strategy assisted with an RB digital twin
has shown to be effective for the CBM of a damaged structure.
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Future work 13/13

Overcome challenges of model updating by using a component-based
approach

• Effectively update a model by replacing a component with a defected
component after identifying new damage locations

Figure 12: Digital twin of a pressure vessel using a component-based approach†

† Akselos, Case study: digital twin of pressure vessel,
https://www.akselos.com/resources-detail/digital-twins-of-pressure-vessels-unlocking-the-full-potential-of-ogtcs-
robotic-inspection-joint-industry-project-with-the-oil-and-gas-technology-center
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Methods 1/8
Reduced basis approximation

Ex) Finite element (FE) dimension N = 3,
Reduced basis (RB) dimension N = 2

Figure 13: Concept of RB method†

† Kang, S., & Lee, K. (2021). Real-time, high-fidelity linear elastostatic beam models for engineering education.
Journal of Mechanical Science and Technology, 35(8), 3483-3495.
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Methods 2/8
Fatigue analysis

Steps for fatigue analysis in ASME Pressure Vessel Code†

1 Determine the load history of the vessel.

2 Determine the individual cycles and define the total number of cyclic
stress ranges in the load history.

3 Determine the equivalent stress range for the cycle.

4 Determine the effective alternating equivalent stress amplitude for the
cycle.

5 Determine the number of cycles to failure for the alternating equivalent
stress.

Figure 14: Fatigue curve of a vessel steel†

† The American Society of Mechanical Engineers, ASME Boiler & Pressure Vessel Code, Section VIII Division 2,
2019 Edition
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Methods 3/8
Linear elasticity problem

• Strong form ∂

∂xo
j (µ)

(
C o

ijkl(µ)
∂uo

k(µ)

∂xo
l (µ)

)
= 0, in Ω

o
(µ) (4)

• Boundary conditions
uo

= 0 on Γ
o
1 ,Γ

o
2 , C o

ijkl

∂uo
k

∂xo
l

en,j = qen,i on Γ
o
3 (5)

Γ1
o Γ2

o

Γ3
o

Figure 15: Boundary conditions of a damaged vessel model

• Compuational subdomains

𝑒3𝑒1

𝑒2

𝑒3
𝑒1

𝑒2

: Subdomain 3 (Ω3): Subdomain 1 (Ω1) : Subdomain 2 (Ω2)

Figure 16: Computational subdomains of a damaged vessel

• Weak form
3∑

s=1

∫
Ωo

s (µ)

∂vo
i

∂xo
j (µ)

Co
ijkl(µ)

∂uo
k(µ)

∂xo
l (µ)

dΩo
(µ) =

∫
Γo

3(µ)
qo

(µ)eo
n,i(µ)vo

i dΓo
(µ), ∀vo ∈ X o

(µ) (6)

• Weak form in parameter-independent reference domain Ω
• Required to map geometric parameter µd efficiently
• Enabled by a Jacobian matrix JΦ of a parametric map Φ(x;µ)
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Methods 4/8
Geometric parameterization

• Parametric map Φ(x;µ) = xo(x;µ) = x + ∆xd(µ)
• Geometric parametrization for dent size µd

• Transformation ratio: variate the dent size along the ratio
µd − dref

∥x∥L2• Geometric parametrization for each subdomain

Subdomain 1: xo(x;µ) = x +
µd − dref

∥x∥L2

x

Subdomain 2: xo(x;µ) = x +

µd − dref

∥x∥L2

 ∥x∥L2
− rref,out

rref,in − rref,out

 x

𝑒3

𝑒2

𝑂′ 𝑥3
o𝑥3

𝑥2

𝑥2
o 𝑥o

𝑥
𝑑ref

∆𝑥2

∆𝑥3

𝑑

(a) Ω1

`

𝑟out,ref

𝑒3

𝑒2

𝑂′

𝑟in,ref

𝑟in

𝑥o

∆𝑥2

∆𝑥3

𝑥2

𝑥2
o

𝑥3
o𝑥3

𝑥

(b) Ω2

Figure 17: Schematic representation of mapping functions
• Weak form in a reference domain

3∑
s=1

∫
Ωs

∂vi

∂xj
Cijkl,s(x;µ)

∂uk(µ)

∂xl
dΩ =

∫
Γ3

q(x;µ)en,i vi dΓ, ∀v ∈ X , (7)

where

Cijkl,s(x;µ) = [J−1
Φs

(x;µ)]jj′C o
ij′kl′ (µ)[J

−1
Φs

(x;µ)]ll′ |JΦs (x;µ)|,

q(x;µ) = qo
(µ)|JΦ3 (x;µ)en|.
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Results 5/8
Damage scenarios [1/2]

• Scenario 1: vessel with initially identified dent size µd=1 cm (number of
MCMC samples: 104)

Observation

: Strain gauges

Strain data at dent size = 0.01 m

Inverse parameter estimation

Measurement error: 5% deviation

𝜇𝐸=191 GPa, CV=0.025

Young’s modulus 𝐸

𝜇𝜈=0.03, CV=0.12

Poisson’s ratio 𝜈

𝜇𝑝=40 MPa, CV=0.01

Internal pressure 𝑝

𝜇𝑑=0.01 m, CV=1.001

Dent size 𝑑

ෝ𝝁𝑬=189.3 GPa ෝ𝝁𝝂=0.3013

ෝ𝝁𝒑=40.05 MPa ෝ𝝁𝒅=0.0100 m

Prior Information

Forward response prediction

Fatigue life prediction

Min. 𝑵𝐟 = 𝟏. 𝟎𝟏 × 𝟏𝟎𝟕

Figure 18: Statistical fatigue life prediction of a damaged vessel for scenario 1

Table 4: Posterior estimates and credible intervals for scenario 1

Parameters True Estimated mean Estimated stdv 95% CI

E [GPa] 191 189.3 1.49 [186.40, 192.25]

ν [-] 0.3000 0.3013 0.0014 [0.2987, 0.3040]

p [MPa] 40 40.05 0.26 [39.55, 40.55]

d [m] 0.0100 0.0100 0.00015 [0.0097, 0.0103]

stdv: standard deviation, CI: credible interval
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Damage scenarios [2/2]

• Scenario 2: vessel with enlarged dent size µd=3 cm (number of MCMC
samples: 104)

Observation

: Strain gauges

Strain data at dent size = 0.03 m

Inverse parameter estimation

Measurement error: 5% deviation

𝜇𝐸=191 GPa, CV=0.025

Young’s modulus 𝐸

𝜇𝜈=0.03, CV=0.12

Poisson’s ratio 𝜈

𝜇𝑝=40 MPa, CV=0.01

Internal pressure 𝑝

𝜇𝑑=0.01 m, CV=1.001

Dent size 𝑑

ෝ𝝁𝒅=0.0300 m

Prior Information

ෝ𝝁𝑬=191.2 GPa ෝ𝝁𝝂=0.3001

ෝ𝝁𝒑=40.00 MPa

Forward response prediction

Fatigue life prediction

Min. 𝑵𝐟 = 𝟏. 𝟔𝟖 × 𝟏𝟎𝟓

Figure 19: Statistical fatigue life prediction of a damaged vessel for scenario 2

Table 5: Posterior estimates and credible intervals for scenario 1

Parameters True Estimated mean Estimated stdv 95% CI

E [GPa] 191 191.2 1.83 [187.60, 194.76]

ν [-] 0.3000 0.3001 0.0019 [0.2964, 0.3038]

p [MPa] 40 40.00 0.29 [39.43, 40.56]

d [m] 0.0300 0.0300 0.00007 [0.0299, 0.0302]

stdv: standard deviation, CI: credible interval
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Empirical interpolation method (EIM)

• Used to ensure affine parametric dependence for an offline/online
decomposition in RB analysis

Qa∑
q=1

θ
q
a(µ)BTAq

NB︸ ︷︷ ︸
offline

uN (µ) =

Qf∑
q=1

θ
q
f (µ)B

Tf q
N︸ ︷︷ ︸

offline︸ ︷︷ ︸
online

• Approximated non-affine function to affine
function by

Φ(x;µ) = MEIM (x;µ) + eEIM (x;µ)

=

Q∑
j=1

θj(µ)hj(x) + eEIM (x;µ)

θ(µ): interpolation coefficients

h(x): EIM basis functions

1 2 3 4 5 6 7 8

Number of EIM basis functions

1 10

1 10

1 10

1 10
0
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a
x
im

u
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o
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Figure 20: Error convergence for EIM
training

• Applied to a vessel problem due to non-affine mapping functions
represented as:
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Parametric maps

𝑒3𝑒1

𝑒2

𝑒3
𝑒1

𝑒2

: Subdomain 3 (Ω3): Subdomain 1 (Ω1) : Subdomain 2 (Ω2)

Figure 21: Computational subdomains of a damaged vessel

Table 2: Parametric maps on subdomains

Subdomain Parametric map M(x;µ)

Ω1

xo
1

xo
2

xo
3

 =


x1 + (x1 − x1,0)

(µ4 − dref)

∥x∥L2

x2 + (x2 − x2,0)
(µ4 − dref)

∥x∥L2

x3 + (x3 − x3,0)
(µ4 − dref)

∥x∥L2



Ω2

xo
1

xo
2

xo
3

 =


x1 + (x1 − x1,0)

(
∥x∥L2 − rref,out

rref, in − rref,out

)[
(µ4 − dref)

∥x∥L2

]
x2 + (x2 − x2,0)

(
∥x∥L2 − rref,out

rref, in − rref,out

)[
(µ4 − dref)

∥x∥L2

]
x3 + (x3 − x3,0)

(
∥x∥L2 − rref,out

rref, in − rref,out

)[
(µ4 − dref)

∥x∥L2

]


Ω3

xo
1

xo
2

xo
3

 =

x1

x2

x3


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