Dayoung Kang

PhD Student

Computational Science and Engineering, Georgia Institute of Technology Atlanta, GA | +1 678-794-2234 | dkang339@gatech.edu | dkang339.github.io

PROFILE SUMMARY

- Third-year PhD student with research in developing rapid yet accurate machine learning models
- Specialized in multifidelity modeling using both limited expensive data and abundant cheaper data
- Experienced in both data-driven and physics-based surrogate modeling with applications to digital twin, design optimization, and reliability analysis

RESEARCH INTERESTS

Scientific Machine Learning (neural network, linear models, Gaussian process), Multifidelity Methods (multifidelity Monte Carlo, multifidelity Gaussian process), Reduced Order Models (POD, reduced basis)

EDUCATION

Georgia Institute of Technology
PhD in Computational Science and Engineering
Pusan National University
Master in Aerospace Engineering
Pusan National University
Bachelor in Aerospace Engineering

Atlanta, GA
Aug 2023 – Present
South Korea
Sep 2020 – Aug 2022
South Korea
Mar 2016 – Aug 2020

JOURNAL PUBLICATIONS

Kang, D., Kang, S., Kim, B., & Lee, K. (2025). Condition-Based Fatigue Life Monitoring of a High-Pressure Hydrogen Storage Vessel Using a Reduced Basis Digital Twin. *Engineering Structures*, 336, DOI: 10.1016/j. engstruct.2025.120196

Qian, E., **Kang, D.**, Sella, V., & Chaudhuri, A. (2025). Multifidelity linear regression for scientific machine learning from scarce data. *Foundations of Data Science*, 7(1), 271-297. DOI: 10.3934/fods.2024049

Kang, D., Noh, H. G., Kim, J., and Lee, K. (2022). Inverse Identification of a Constitutive Model for High-Speed Forming Simulation: an Application to Electromagnetic Metal Forming. *Materials*, 15(20), 1–30. DOI: 10.3390/ma15207179

Kang, D., Pham. T. M., and Lee, K. (2022). Reliability-based Design Optimization of a High-Pressure Hydrogen Storage Vessel Using a Static Condensation Reduced Basis Element Method. *Transactions of the Korean Society of Mechanical Engineers*, A, 46(2), 127–144. DOI: 10.3795/KSME-A.2022.46.2.127

Kang, S., **Kang**, **D.**, and Lee, K. (2021). On the Effect of Air-Simulated Side-Jets on the Aerodynamic Characteristics of a Missile by Multi-Fidelity Modeling. *Journal of the Korean Society for Aeronautical & Space Sciences*, 49(2), 95-106. DOI: 10.5139/JKSAS.2021.49.2.95

CONFERENCES

Qian, E., **Kang, D.**, Sella, V., and Chaudhuri, A. (March, 2025). Multifidelity Linear Regression for Scientific Machine Learning from Scarce Data. Poster presentation at *SIAM Conference on Computational Science and Engineering*

Kang, D., Pham. T. M., and Lee, K. (November, 2022). Statistical Fatigue Life Prediction of Damaged Structure Using Reduced Basis Method. Oral presentation at *The Korean Society for Aeronautical & Space Sciences 2022 Fall Conference*

Kang, D., Pham. T. M., and Lee, K. (May, 2022). Design Optimization of a Hydrogen Vessel Under Operating Condition Uncertainty via a Parametrized Component-Based Reduced Basis Model. Oral presentation at *The Korean Society of Mechanical Engineers 2022 Spring Conference*

AWARDS

Best Paper Award November 2023

Awarded by the Korean Society of Mechanical Engineers for the first-authored paper "Reliability-based Design Optimization of a High-Pressure Hydrogen Storage Vessel Using a Static Condensation Reduced Basis Element Method"

Outstanding Thesis Award

January 2024

Awarded by the Korean Society for Design Optimization for the Master's Thesis "Reliability-Based Design Optimization and Digital Twin-Driven Fatigue Life Prediction of a Hydrogen Storage Vessel via Reduced Basis Method"

Dean's Writing Award

April 2019

Awarded at *the State University of New York at Oswego* for the co-authored report "A Brief Study of the Mechanics Behind Hydroelectric and Wind Powered Renewable Energy Systems"

Foundation Scholarship

Spring 2019

Funded by the National Research Foundation (NRF) of Korea for selection as an international exchange student

PROJECTS

Estimation of Hydrodynamic Coefficients of a Submarine Based on Machine Learning Techniques (Funded by an Agency for Defense Development, South Korea)

Constructed surrogate models to predict hydrodynamic forces of an unmanned underwater vehicle using Kriging

Six-DOF Aerodynamic Database Modeling With Simulation and Experimental Data (Funded by an Agency for Defense Development, South Korea)

Constructed multifidelity surrogate models to predict aerodynamic coefficients of a missile using Co-Kriging

TEACHING

Teaching Assistant for **Numerical Analysis and Algorithms** *Georgia Institute of Technology*

Spring 2024, Spring 2025

Atlanta, GA

- Led exam review sessions, developed homework problems and solutions
- · Guided students in weekly in-class problem-solving activities

Teaching Assistant for Introduction to IoT-based Digital Twin Pusan National University

Fall 2022

South Korea

• Led lectures on mesh generation with *Cubit*, structural simulation with *Akselos*, and introduction to fatigue analysis, developed homework problems and solutions

MENTORING

Research Mentor for Multifidelity Neural Network Project

Fall 2024 - Fall 2025

Mentored an undergraduate student in developing neural network models with multifidelity data

- Mentor for Georgia Tech President's Undergraduate Research Award (PURA) project
- Guided theory and development of multifidelity neural networks

Research Mentor for Multifidelity Linear Regression Project

Summer 2025

Mentored an undergraduate student in implementing multifidelity models for uncertainty quantification

- Mentor for Georgia Tech's Summer Undergraduate Research in Engineering (SURE) program
- · Guided theory and implementation of multifidelity Monte Carlo and multifidelity linear regression

SKILLS

Programming Python, MATLAB, C++, R **Libraries** PyTorch, scikit-learn, libMesh